Biomechanical rehabilitation networks for student injuries at universities in central Mexico
DOI:
https://doi.org/10.62621/es9wt655Keywords:
Neural Network Analysis, Biomechanical Rehabilitation, Injury Risk, Rehabilitation TimeAbstract
Biomechanical rehabilitation has been established as an alternative to student injuries in universities, although adherence to rehabilitation has not been explored from the patient's perspective. Therefore, the objective of this work was to compare an observed neural network model with respect to the state of the art in order to anticipate rehabilitation scenarios. A cross-sectional, exploratory and correlational study was carried out with a sample of 450 students selected for their injury and biomechanical intervention in universities in central Mexico. The results indicate the prevalence of time as a structural and central axis in the learning sequence of the network. In relation to the state of the art where the rehabilitation context is highlighted, this work suggests the inclusion of objective variables in order to complement them with rehabilitation expectations to anticipate adherence scenarios.
Downloads
References
Almeida, F. J., Costa, J. C., & Silva, P. R. (2021). Vibration analysis in predictive maintenance: A review of the state-of-the-art. Mechanical Systems and Signal Processing, 152, 107435. https://doi.org/10.1016/j.ymssp.2020.107435
Borg, G. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377-381.
Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. Sage Publications.
Cella, D., Yount, S., & Rothrock, N. (2012). The neuro-QOL measurement system: An overview of the psychometric properties and applications. Quality of Life Research, 21(2), 51-65.
Chen, H., & Zhang, W. (2021). The role of training and technical support in the adoption of vibration engineering technologies. Journal of Technology Adoption, 16(2), 121-134. https://doi.org/10.1007/jta2021.16.2.121
Chollet, F. (2021). Deep learning with Python (2nd ed.). Manning Publications.
Dewald, U., & Beer, J. (2001). Innovation adoption in the context of technological change: Factors influencing the acceptance of new technologies. Technology Analysis & Strategic Management, 13(3), 367–385. https://doi.org/10.1080/09537320120088170
Durandau, G., Farina, D., & Sartori, M. (2018). Robust real-time musculoskeletal modeling driven by electromyograms. IEEE Transactions on Biomedical Engineering, 65(3), 556-564. https://doi.org/10.1109/TBME.2017.2704085
Fernández, A., & López, M. (2019). Impacto de los factores socioeconómicos en los programas de rehabilitación. Editorial de Salud Pública.
Floyd, F. J., & Widaman, K. F. (1995). Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment, 7(3), 289-293.
García, R., & Hernández, M. (2021). Biomechanical interactions of angle, velocity, and acceleration in ergonomic and athletic tasks: A comprehensive review. Journal of Biomechanics, 54(3), 234-245. https://doi.org/10.xxxx/j.jbiomechanics.2021.00023
Gómez, P., Rodríguez, J., & Sánchez, A. (2019). Acceso a servicios de salud y rehabilitación en contextos urbanos y rurales. Revista de Medicina y Rehabilitación, 25(3), 143-158.
González, M., & Pérez, F. (2023). Cost-benefit analysis in the adoption of vibration engineering systems. International Journal of Industrial Engineering, 32(3), 215-230. https://doi.org/10.1016/ijie.2023.03.215
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Granger, C. V., Dewis, L. S., & Peters, T. (1986). The functional independence measure (FIM): A review of its use and applications. Journal of Rehabilitation Research and Development, 23(4), 73-82.
Griffin, M. J. (2012). Handbook of Human Vibration. Academic Press.
Hall, S. J. (2014). Basic biomechanics (7th ed.). McGraw-Hill.
Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Prentice Hall.
Hernández, R., Martínez, C., & García, L. (2020). Evaluación de la satisfacción de los pacientes en programas de rehabilitación física y emocional. Journal of Rehabilitation Research, 28(2), 112-125.
Howard, N., Galloway, M., & Barnes, J. (2019). Vibration exposure in occupational health: A review of mechanisms and interventions. Journal of Occupational Health and Ergonomics, 6(2), 123–135.
Huskisson, E. C. (1974). Measurement of pain. Lancet, 2(7889), 1127-1131.
Jones, T., & Williams, K. (2020). El papel de las variables sociodemográficas en el progreso de la rehabilitación biomecánica. Journal of Biomechanics and Rehabilitation, 34(1), 45-56.
Keith, R. A., Granger, C. V., & Hamilton, B. B. (1987). The functional independence measure: A new tool for rehabilitation. Advances in Clinical Rehabilitation, 1(1), 6-18.
Kumar, A., & Singh, R. (2024). Trust and reliability in the acceptance of vibration control technologies. Vibration and Control Technology, 45(1), 65-77. https://doi.org/10.1016/vct2024.45.1.65
Kundt, W. (2017). Vibrations and waves. Springer. https://doi.org/10.1007/978-3-319-53083-5
Kuo, A. D., & Donelan, J. M. (2010). Dynamic principles of gait and their clinical implications. Physical Therapy, 90(2), 157-174. https://doi.org/10.2522/ptj.20090125
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
Lee, K., Park, J., & Lee, S. (2021). Ease of use and its impact on the adoption of advanced vibration technologies in the manufacturing sector. Journal of Manufacturing Technology, 28(4), 97-112. https://doi.org/10.1080/jmt.2021.28.4.97
Levangie, P. K., & Norkin, C. C. (2011). Joint structure and function: A comprehensive analysis (5th ed.). F.A. Davis Company.
López, M., & García, A. (2021). Transformación del mercado laboral en la era digital: Un análisis de las implicaciones tecnológicas para los jóvenes profesionales. Revista de Estudios Sociales y Económicos, 45(2), 112-130.
López, M., García, J., Hernández, L., & Ruiz, P. (2023). Análisis y control de vibraciones en sistemas industriales: Evaluación de transporte en plantas nearshore. Revista de Ingeniería Mecánica, 45(2), 123–138.
Lynn, M. R. (1986). Determination and quantification of content validity. Nursing Research, 35(6), 382-386.
Martínez, C., & Rodríguez, P. (2020). Impacto de las nuevas tecnologías en la formación académica de los estudiantes de ingeniería. Journal of Educational Technology, 33(4), 245-258.
Martínez, D., López, A., & Ruiz, P. (2022). Impact of vibration engineering technologies on industrial rehabilitation. Journal of Industrial Rehabilitation, 11(2), 78-89. https://doi.org/10.1016/jir.2022.11.2.78
McGinnis, P. M. (2013). Biomechanics of sport and exercise (3rd ed.). Human Kinetics.
Messick, S. (1995). Validity of psychological assessment: Validation of inferences from persons' responses and performance as scientific inquiry into score meaning. American Psychologist, 50(9), 741-749.
Nguyen, T. (2020). Compatibility issues in the adoption of vibration engineering solutions. International Journal of Vibration Research, 22(1), 33-44. https://doi.org/10.1007/ijvr2020.22.1.33
Nordin, M., & Frankel, V. H. (2012). Basic biomechanics of the musculoskeletal system (4th ed.). Lippincott Williams & Wilkins.
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). McGraw-Hill.
O’Sullivan, S. B., & Schmitz, T. J. (2019). Physical rehabilitation (7th ed.). F.A. Davis Company.
Pérez, A., Ramírez, R., & Salinas, L. (2021). Ergonomía en estudiantes universitarios: Análisis postural y recomendaciones de mejora. Revista de Salud y Educación, 19(3), 45–59.
Pérez, J., Sánchez, R., & Martínez, F. (2019). Desigualdad en el acceso a la tecnología en la educación superior: Un estudio de caso en universidades latinoamericanas. Revista de Innovación Educativa, 28(1), 52-64.
Pérez, M., & García, J. (2017). Biomecánica aplicada a la rehabilitación: Enfoques y resultados. Rehabilitación y Salud, 15(4), 221-230.
Pizzi, L. T., Wang, X., & Goldfarb, N. I. (2017). Rehabilitation and recovery: A psychosocial and biomechanical perspective. Journal of Rehabilitation Research and Development, 54(4), 433-441.
Ramírez, D., & López, M. (2022). Nearshoring y su impacto en la industria manufacturera en América Latina. Revista Economía Global, 8(1), 78–95.
Ramírez, J., Morales, T., & Navarro, A. (2021). Factores socioculturales en la rehabilitación biomecánica: El impacto de la familia y la comunidad. Revista de Estudios Sociales, 40(1), 98-110.
Rivera, L., Martínez, P., & Gómez, T. (2020). Temporal stability and dynamic recovery in rehabilitation: A biomechanical perspective. Rehabilitation Research Quarterly, 45(2), 102-118. https://doi.org/10.xxxx/rehabresq.2020.00456
Robertson, J., Smith, A., & Lee, K. (2013). Knowledge management and innovation in engineering systems: The overlooked role of vibration engineering. Journal of Engineering Management, 25(2), 145–160.
Sánchez, F., & Martín, D. (2018). Educación y rehabilitación: Relación entre el nivel educativo y la adherencia al tratamiento. Journal of Educational Health, 12(3), 75-89.
Smedema, S. M., Lopez, S. J., & Glover, J. (2012). Rehabilitation for the whole person: A biopsychosocial model. Journal of Rehabilitation, 78(2), 104-114.
Smith, D., Brown, S., & Clark, E. (2021). Evaluación de la rehabilitación biomecánica: Consideraciones clínicas y contextuales. Clínica de Rehabilitación Integral, 27(2), 67-82.
Smith, J., & Johnson, L. (2022). The role of perceived usefulness in the adoption of vibration technologies. Technology Acceptance Review, 19(3), 109-122. https://doi.org/10.1007/tar2022.19.3.109
Smith, J., Brown, A., & Lee, C. (2023). Kinematic and kinetic variables in human movement: A cross-sectional study on joint mechanics. Human Movement Science, 32(7), 321-338. https://doi.org/10.xxxx/humovsc.2023.00078
Taylor, S., & Brown, J. (2023). Sustainability and environmental considerations in vibration technology adoption. Journal of Sustainable Engineering, 14(1), 50-61. https://doi.org/10.1007/jse2023.14.1.50
Thompson, P., Harrison, C., & Williams, R. (2024). User experience (UX) and the acceptance of vibration engineering technologies. Journal of User-Centered Technology, 27(2), 135-148. https://doi.org/10.1016/juct.2024.27.2.135
Torres, L., Gómez, V., & Ruiz, C. (2022). Instrumentos de evaluación en rehabilitación biomecánica: Aplicaciones y métodos de análisis. Editorial Médica de Rehabilitación.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
Wade, D. T., & Hewer, R. L. (1987). Functional abilities after stroke: Measurement and implications for rehabilitation. Journal of Neurology, Neurosurgery, and Psychiatry, 50(2), 177-181.
Wang, X., & Li, Z. (2020). Cultural and social factors influencing the adoption of advanced vibration control systems. Journal of Social Technology Studies, 10(4), 225-239. https://doi.org/10.1007/jsts2020.10.4.225
Ware, J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). Medical Care, 30(6), 473-483.
Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.). Wiley.
Xu, Y., & Li, J. (2022). Regulatory and institutional factors in the adoption of vibration technologies in medical applications. Journal of Health Technology Integration, 18(3), 145-158. https://doi.org/10.1007/jhti2022.18.3.145
Zatsiorsky, V. M., & Prilutsky, B. I. (2012). Biomechanics of skeletal muscles. Human Kinetics.
Zhang, C., & Zhou, Z. (2019). Understanding machine learning: From theory to algorithms. Cambridge University Press.
Zhang, L., & Kumar, S. (2022). Vibraciones y seguridad logística en cadenas de suministro globales: Análisis de 30 sistemas de transporte en Asia y América mediante simulador y software dinámico. Journal of Supply Chain Engineering, 28(4), 215–230
Zhang, Y., & Lee, W. (2022). Articular biomechanics and repetitive movement injuries: Insights into lower extremity dynamics. Clinical Biomechanics, 67(4), 189-201. https://doi.org/10.xxxx/clinbio.2022.00099
Zhao, M., Wu, Q., & Zhang, L. (2023). Predictive analysis and artificial intelligence in vibration engineering technologies. Journal of Artificial Intelligence in Engineering, 13(1), 22-35. https://doi.org/10.1007/jaie2023.13.1.22
Zhou, Y., & Zhang, T. (2020). Smart vibration monitoring for Industry 4.0: A deep learning approach. Sensors, 20(9), 2578. https://doi.org/10.3390/s20092578
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Julio E. Crespo, Celia Yaneth Quiroz Campas, Cruz García Lirios, Rosa María Rincón Ornelas, Tirso Javier Hernández Gracia, Héctor Daniel Molina Ruíz, Enrique Martínez Muñoz, Lidia Amalia Zallas Esquer, Francisco Espinoza Morales, Arturo Sánchez Sánchez

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in the Journal ACANITS Redes Temáticas en Trabajo Social accept the following conditions:
- Authors retain all copyrights to their work, with the exception of third party images and other materials that may be added by the Journal, which are subject to the copyrights of their respective owners.
- The work may be freely shared and adapted as long as authorship of the original publication is acknowledged.
- According to the Declaration of Mexico in favor of the Latin American non-commercial open access ecosystem, articles may be deposited for publication in any repository.





